Methodology and Validation of SAR and SARin Full Bit Rate Altimetric Waveforms and Heights from the CRUCIAL Project

Philip Moore, Stephen Birkinshaw (Newcastle University, United Kingdom), Marco Restano (SERCO/ESRIN, Italy), Américo Ambrózio (DEIMOS/ESRIN, Italy), Jérôme Benveniste (European Space Agency, Italy)

1. Introduction

- CRUCIAL is funded by the ESA's Support To Science Element (STSE) a programmatic component of the Earth Observation Envelope Programme, to investigate the application of CryoSat-2 (CS2) data over inland water with a forward-look component to the future Sentinel-3 mission.
- This poster summarises the methodology to process FBR L1A Doppler beams to form a waveform product using ground cell gridding, beam steering and beam stacking.
- Validation for Amazon and Mekong (2011-2015) against gauge data and other altimeter missions.
- SARin processing include comparison of heights from the two antennae, extraction of slope of the ground surface and validation against ground data where appropriate.

3. Number of Looks: SAR Tonlé Sap

Pass across Tonlé Sap (TS) 3 Dec 2011 (Fig. 1). Burst echo heights (Fig. 2) show need for multi-look waveforms. Effect of number of looks in stack on multi-look waveform (Fig. 3) and heights Fig. 4. Consistency across 68 points (i.e. lowest variation) for N=40 (Table 1) and for additional passes in Table 2.

Hurst Multi-lool HACTAL COMPLEX

 100-12-0
 600
 531
 530
 540

 101-12-0
 430
 418
 432
 542

 101-12-0
 538
 530
 544
 542

 101-12-0
 480
 416
 541
 542

 101-12-0
 480
 446
 437
 225

 Table 2: Sigma for (cm) for passes across TS for varying N. Empirical retrackers (top): OCOG/Threshold lower.
 1000/2011
 1000/2011

Comparison of CryoSat-2, OSTM (USDA) and gauge at Prek Kdam downstream of OSTM ground track. Altimetry corrected for a 12-day time lapse against gauge data. RMS differences between gauge and OSTM (99 values) 42.6 cm; CryoSat-2 42.1 cm (26) values. Fig. 5, shows midpoint of CryoSat-2 across Tonlé Sap with time series in Fig. 6.

4. SAR: Mekong at Kratie

Time series of CryoSat-2 heights and gauge data at Kratie on the Mekong (Fig. 7). Statistics of differences (Table 2) for different altimeter missions, studies, operating period, number of points and chainage from gauge. CryoSat-2 chainage values denote maximum distances upstream and downstream of gauge.

2. Methodology

- Data: Cryosat-2 L1A FBR I (in-phase carrier) and Q (quadrature-phase carrier)
- Geophysical corrections included to form the height above reference ellipsoid.
- Azimuthal FFT applied to burst echoes and heights retracked using(OCOG/Threshold) retracker to form ground surface.
- Approximate steering of beams to equiangular ground points
- Multi-look beams stacked and slant range and tracker bin corrected.
- 2N+1 waveforms Hamming windowed to form multi-look waveform
- Empirical retrackers formulated for inland water applications

5. SARin: Amazon at Tabatinga

CS2 in SARin mode over Amazon near Tabatinga gauge (Fig. 8). Heights from two antennae agree at cm level (Fig. 9) over Amazon floodplain. Two passes cross east and west of gauge separated by about 24 hours in time and over 100 km in distance providing an altimetric measure of river slope.

Correcting the time series of CS2 heights for river slope gives a RMS difference of 29.9 cm (Fig 10). Analysis of cross-power between waveforms from the two antennae weighted by the coherence gives the cross-angle (Fig. 11) the off pointing of the antennae from nadir to the resultant of summed reflectance from the water targets in the slice of the altimeter footprint. Amazon centred at lat 4.2°S. Fig. 12 and Fig. 13 show an ascending pass across the Amazon and the derived cross angle in degrees. A positive cross-angle implies dominant reflectance to right of flight direction with converse for a negative cross-angle. The main body of the Amazon is first to the left and then to the right of the ground track giving the positive early cross-angle values, the large negative values before returning to near zero as the river meanders out of range cross-track. The zero cross-track angle may be offset and requires precise knowledge of the satellite roll angle. Often the cross-angle is noisy due to the saturated ground acting as a water reflector but these plots and generally show the expected trend.

Conclusions

 Burst echoes are too noisy and inland water targets require multi-looked waveforms
 The precision of the derived heights depends on the looks in the multi-look with N=40 (i.e. 81 out of a possible 240 looks) being a good choice.

Comparison of CS2 against in situ and altimetric data complicated by non-repeat orbit. CS2 performed as well as OSTM across TS despite the assumption of the same time lapse compared to gauge data.

Comparisons on the Mekong difficult and requires consideration of distance from gauge. General conclusion: CS2 performing as well as ERS-2 and ENVISAT, while AltiKa gives the lowest RMS (29.7 cm) for a crossing 7 km from the gauge. But
 RMS against Tabatinga gauge 29.9 cm. SARin heights from antennae identical.

Cross-power between SARin antennae dominated by water reflectance with positive cross-angle when reflectors on right hand side of ground track.