CryoSat-2 sUCcess over Inland water And Land (CRUCIAL) ESA/ESRIN Contract 1/6287/11/I-NB

(3newne Newtle
4. University Civilil Engineering \&Geosciences

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy 6 June 2017

CRUCIAL Team Members

Philip Moore ${ }^{1}$, Stephen Birkinshaw ${ }^{1}$, Peter Bauer-Gottwein ${ }^{2}$, Raphael Schneider ${ }^{2}$, Marco Restano ${ }^{3}$, Américo Ambrózio ${ }^{4}$, and Jérôme Benveniste ${ }^{5}$
${ }^{1}$ Newcastle, Civil Engineering \& Geosciences, United Kingdom, ${ }^{2}$ Department of Environmental Engineering, Danish Technical University ${ }^{3}$ SERCO c/o ESA, ${ }^{4}$ DEIMOS c/o ESA, ${ }^{5}$ ESA-ESRIN

(Former members: Phillippa Berry, Robert Balmbra, S. Dinardo, B.M. Lucas)

CRUCIAL: Overview

- CRUCIAL i funded by ESA's Support To Science Element (STSE), to investigate the application of CryoSat-2 data over inland water with a forward-look to the Sentinel-3 mission.
- CryoSat-2's primary instrument is SIRAL (SAR Interferometric Radar Altimeter). SIRAL operates in one of three modes; Low Resolution Mode (LRM), Synthetic Aperture Radar (SAR) and Interferometric Synthetic Aperture Radar (SARin).
- Previous satellite altimeters lost information due to onboard echo averaging. The high along-track sampling of CryoSat-2 altimeter in SAR/SARin modes offers the opportunity to recover high frequency signals over certain regions of the Earth's surface.
- CRUCIAL investigated processing of SAR and SARin Full Bit Rate (FBR) data to construct multi-looked waveforms and comparison against in situ water heights and contemporaneous satellite altimetric missions.
- CRUCIAL assessed CryoSat-2 radar altimetry data for river analysis and modeling.

WP1000: Scientific Requirement Consolidation

ESA's R\&L project pioneered near real-time inland water heights. A questionnaire in WP1000 solicited responses for future products including

- Higher spatial and temporal resolution
- Water extent and discharge.
- Continuous long-term time series for large ephemeral rivers and lakes, e.g. Okavango, Lake Eyre
- Reliability and sustainability
- The R\&L data for the largest rivers should be extended to a greater number of river channels
- Uncertainty estimation of the data.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

Milestone 2: Review of CRUCIAL Objectives

Initial analysis concentrated on

- CryoSat-2 LRM land and inland water
- L1B waveforms
- Hydrological modelling

Change of direction with emphasis on

- Processing FBR L1A SAR/SARin data over inland waters
- SAR/SARin FBR L1A Product and Validation
- Hydrological modelling \&Geosciences

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

WP4000/5000: Product Development and Validation and Impact

- River Masks
- SAR/SARin waveforms from L1A data
- Multi-look Analysis from I and Q SAR/SARin telemetered data
- Ground points
- Zero padding doubles samples in waveforms
- Beam steerage
- Beam Formation
- Retracking of waveforms over inland water
- SARin analyses
- Heights from two antennae
- Coherence and cross angle
- SAR FBR Product and Validation
- Tonlé Sap
- Mekong
- Amazon
- SARin FBR Product and Validation
- Amazon
- Brahmaputra
- Informing regional-scale hydrodynamic models
- Implications of the orbit configuration for hydrologic analysis
- Preprocessing of CryoSat-2 altimetry
- Calibration of river morphology parameters
- Synthetic assimilation experiments
- Assimilation of real CryoSat-2 altimetry

River Mask: Use of Normalised Difference Water Index (I)

- Use of Normalized Difference Water Index (NDWI) (McFeeters, 1996) or NDVI (Normalized difference vegetation index)
- Uses reflectance of green band 3 and near-infrared band 5 of Landsat NDWI=(Green-NIR)/(Green+NIR).
- Mosaic of Landsat images merged
- NDWI identifies water
- Extract approximate mask to eliminate off river reflectance
- Convolve approximate mask and water for final river mask

Six Landsat images of the Mekong River between $12^{\circ} \mathrm{N}$ and $18^{\circ} \mathrm{N}$ Newcastle
d. University Cinile Engineefing \&Geosciences

Water
$12^{\circ} \mathrm{N}-18^{\circ} \mathrm{N}$

Water mask
$14.2^{\circ} \mathrm{N}-14.8^{\circ} \mathrm{N}$

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy 6 June 2017

River Mask: Use of Normalised Difference Water Index (II)

Approximate mask $12^{\circ} \mathrm{N}-18^{\circ} \mathrm{N}$

Final mask
$12^{\circ} \mathrm{N}-18^{\circ} \mathrm{N}$

Final mask
$14.2^{\circ} \mathrm{N}-14.8^{\circ} \mathrm{N}$

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

- Landsat imagery is straightforward to use but may not be applicable in all locations due to cloud cover. For such areas SAR imagery can be used.
- The mask for the Mekong is not time dependent but can be temporal if imagery is used in near real-time.
- River masks over areas with large inland water distributions need to be cleared to remove spurious offriver points.
- Time-variable masks could improve coverage of satellite altimetry data
- Newcastle/DTU adopted similar approaches.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

SAR and SARin FBR Parameters

Baseline B, except for data in March 2015.

SAR (Baseline B)
Burst repetition interval $=11.7 \mathrm{~ms}$
Echoes per burst = 64
Tracking Samples per echo $=128$
Measurement range window $=30 \mathrm{~m}$
Range bin samples $\sim 0.23 \mathrm{~m}$
Pulse Repetition Frequency (PRF) $=18181.82 \mathrm{~Hz}$
Speed of light (c) $=299792458 \mathrm{~m} / \mathrm{s}$
Carrier Frequency (CF) $=13.575 \mathrm{e} 9 \mathrm{~Hz}$
Wavelength: $\lambda=c / C F$
Carrier wave-number: $\mathrm{k}_{0}=2 \pi / \lambda$
Along-track antennae 3 dB width 1.0766° (full beam width)
Cross-track antennae 3 dB width 1.2016° (full beam width)
Antenna: Left of the flight direction

SARin (Baseline B)

As for SAR with the exceptions
Burst repetition interval $=46.7 \mathrm{~ms}$
Measurement range window $=120 \mathrm{~m}$
Interferometer baseline: 1.172 m
Tracking Samples per echo $=512$
Antennae: Left and right of the flight direction

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

Baseline configuration differences (Baseline B to Baseline C)

https://wiki.services. eoportal.org/ tiki-index.php?page=CryoSat+Technical+Notes.
Baseline C Level-1B products distributed in updated format, including attitude information (roll, pitch, yaw) and, for SAR/SARin, the waveform length doubled with respect to Baseline B.

Description	Baseline B	Baseline C	Comments
Range window samples	SAR 128 SARin 512	SAR 256 SARin 1024	Loss of trailing edge in Baseline B. No impact on quasi-specular waveforms
Range window size	SAR~ 30 m SARin $\sim 120 \mathrm{~m}$	SAR~60m SARin $\sim 240 \mathrm{~m}$	As above
Window delay reference sample (range bin starting from zero)	SAR 64 SARin 256	SAR 128 SARin 512	
Attitude bias	Pitch $=0.0^{\circ}$ Roll $=0.0^{\circ}$	Pitch $=0.0550^{\circ}$ Roll $=0.1062^{\circ}$	
Datation bias	SAR $/$ SARin $=-0.5195 \mathrm{~ms}$	SAR/SARin $=0$	
Range bias	SAR/SARin $=0.673 \mathrm{~m}$	SAR/SARin $=0$	
External phase correction	SARin $=-0.612 \mathrm{rad}$	SARin $=0$	

\&Geosciences
CRUCIAL Final Presentation Meeting, ESRIN-ESA, Frascati, Italy, 6 June 2017

CryoSat-2 modes

Amazon Basin: LRM (green), SAR (red) and SARIN (blank) tracking.

Calibration applied to all heights

Instrument range bias
USO correction
Datation correction
Range Bias
Roll correction

SIRAL transmission and reception timing in the LRM, SAR, and SARIn modes with transmission timing and changes in the sampling of the received echo (Wingham et al., 2006).
\&Geosciences
Final Presentation Meeting, ESRIN-ESA, Frascati, Italy
6 June 2017

Multi-look Analysis

SAR/SARin multi-look waveforms $\approx 320 \mathrm{~m}$ along ground track; i.e. factor four reduction compared to burst echoes.
SAR (SARin) burst echoes at $80(20) \mathrm{Hz}$ processed through the following steps.

- Range FFT over 64 pulses in burst
- Beam formation and steering to nadir direction
- Form burst centre ground points from OCOG/Threshold retracker applied to nadir beam
- Form a sequence of ground points at beam angle using a coarse approximate steering
- Beam formation and steering to ground points
- Stack beams pointing at ground points
- Apply slant range correction, tracker range correction and Doppler range correction
- Height retrieval from empirical and OCOG/Threshold retrackers.
- Details in D4100 Algorithm Theoretical Basis Document

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

Schematic of bursts, the fan of Doppler beams, ground points and multi-looks
from altimetry

points

Steering to nadir/ground point directions

Use of rock angle

$$
\begin{aligned}
& \alpha=-\arcsin (\dot{h} / \mathrm{v}) \\
& \beta=-\arccos \left(\frac{\left(\underline{X}_{\text {ground }}-\underline{X}_{\text {sat }}\right) \cdot\left(\underline{X}_{g}-\underline{X}_{\text {sat }}\right)}{\left|\underline{X}_{\text {ground }}-\underline{X}_{\text {sat }}\right| \cdot\left|\underline{X}_{g}-\underline{X}_{\text {sat }}\right|}\right) \\
& \text { whence } \\
& \theta_{R}^{b}=\left\{\begin{array}{c}
\alpha \\
\alpha+\beta
\end{array}\right.
\end{aligned}
$$

Upper definition for nadir direction; Lower for ground point

Inland water Empirical Retrackers

e.g. Type 1 (Specular):

Waveform given by positive and negative exponential branches with continuity at branch $t=t_{0}$ intended to capture quasi-specular waveforms

Parameters: a, t_{0}, k_{1}, k_{2}

$$
\begin{aligned}
& f= \begin{cases}\left(-k_{1}\left(t-t_{0}\right)\right)^{1 / 2} & \mathrm{t} \leq \mathrm{t}_{0} \\
\left(k_{2}\left(t-t_{0}\right)\right)^{1 / 2} & \mathrm{t} \geq \mathrm{t}_{0}\end{cases} \\
& P=a \mathrm{e}^{-f^{2}}
\end{aligned}
$$

Each waveform was fitted with best fitted waveform of lowest Normalized Residual Error
$N R E=\sum_{i=1}^{N_{\text {pad }}}\left(P_{i}^{o b s}-P_{i}^{\mathrm{mod}}\right)^{2} / \sum_{i=1}^{N_{\text {pad }}}\left(P_{i}^{o b s}\right)^{2}$

Retracker \#	Description	Waveform Shape
$\mathbf{1}$	Specular (still water)	Ocean like (ruffled water)
$\mathbf{2}$	Ocean like with fall away at high \# bins (ruffled waters)	Two specular peaks (strong returns off two patches of still water)
$\mathbf{3}$	Retracker Type 2 with additional specular peak (ruffled and still water)	
$\mathbf{5}$		

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

FBR SAR Analysis: Tonlé Sap, Cambodia

- primary validation site for FBR SAR data.
- A combined lake and river, flow changes direction twice a year; lake expanding/shrinking with the seasons. Nov to May (dry season) drains into Mekong; after heavy rains (start June) backs up to form a lake.

Seasonal variation in extent of Tonle Sap

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy 6 June 2017

Cryosat-2 ground points across Tonlé Sap North to South pass

Orthometric height above EGM96 geoid. 80 Hz burst data (black); running average over 4 points of burst data (blue) and multi-look with $\mathrm{N}=40$ (red).

Conclusion: Multi-looking is essential due to radar speckle in the burst echoes.

Tonlé Sap, Cambodia: Multi-looking

Multi-looking over a moderate number $2 \mathrm{~N}+1$ of waveforms in the stack is preferable (D4200)

- N, number of waveforms either side of burst closest to nadir with the ground point.
- Preference for $\mathrm{N} \approx 40$, rather than maximum possible ($\mathrm{N} \approx 120$).
- The lower N gives a steeper leading edge to waveform facilitating retracking.
- Change in N causes offset between the derived heights, indistinguishable from other contributions to altimeter bias, a fixed value for N must be applied to all analyses.
- Hamming window for weighting the waveforms outperformed a unit weight

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

Tonlé Sap: Waveform Comparison

WF across Tonlé Sap on 3 Dec 2011. Waveforms from G-POD and N=110 and 40 aligned at peak (amplitude and bin). X-axis bin number. The earlier bin retracked point for large N causes the range to surface to decrease, i.e. the land/water height above reference ellipsoid (and hence orthometric height) to increase. Lower N increases the noise on the waveform tail.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

Tonlé Sap, Cambodia: Multi-looking

Multi-look N	Sigma Empirical retrackers (cm)	Sigma OCOG/Threshold (cm)
G-POD: SAMOSA2	7.30	
G-POD: retracked	5.63	6.60
140	5.69	6.14
110	6.01	6.23
90	5.72	6.08
70	6.01	6.23
40	6.75	6.01
20	5.58	6.23
	5.89	5.81
10	5.01	6.35
	5.87	5.38
5	5.20	5.88
	5.88	5.99
	5.94	5.35

Statistics of fit for pass across Tonlé Sap 3 Dec 2011. G-POD: value from closest fit to CRUCIAL ground points in time. CRUCIAL values: top cosine weighting; lower unit weight.

Conclusion: For SAR mode, a reduction in the number of waveforms in the stack to about $81(\mathrm{~N}=40)$ centred on the near nadir burst is preferred.

Conclusion: A weighting system based on the Hamming window is strongly recommended.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

Tonlé Sap, Cambodia: Height Validation

Google earth image of Tonlé Sap showing locations of

- 62 CryoSat-2 passes.
- 2 gauges (turquoise markers).
- S-N OSTM altimetric pass (red marker).

Internal consistency of pass provides measure of the scatter in the data. Points either side of Tonlé Sap midline accepted until multi-look waveform best retracked by double peak empirical retracker identifying reflectance off two water surfaces. Maximum of 10 data points either side of midpoint imposed in the first instance. Passes with 5 or less accepted points rejected. A total of 34 passes gave RMS $2.44-6.54 \mathrm{~cm}$, with mean $4.35 \pm 0.10 \mathrm{~cm}$. Increasing points either side of Tonlé Sap centre from 10 to 20 gave RMS $1.2-18.7 \mathrm{~cm}$ with mean $6.0 \pm 3.4 \mathrm{~cm}$. Risk in low flow regimes some points could be overland.

Conclusion: Crysosat-2 SAR heights have precision of $4-6 \mathrm{~cm}$ on average.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

Tonlé Sap, Cambodia: Height Validation

Time series of aligned heights across Tonlé Sap.

Conclusion: We cautiously infer that CryoSat-2 is performing better than OSTM across Tonlé Sap.

Prek Kdam days advanced	Correlation OSTM	Correlation Kumong Luong
0	0.962826	0.934639
6	0.982969	0.961042
11	0.988296	0.978429
12	0.988325	0.980823
13	0.987864	0.982860
17		0.987490
18		0.987807
19		0.987806
20		0.987491

Time difference and auto-correlations between gauge data at Prek Kdam against the Kumong Luong gauge data and OSTM altimetric heights.

Satellite	$\#$	RMS v Prek Kdam(t+12)
(cm)		

RMS differences between Prek Kdam gauge advanced 12 days and OSTM and CryoSat-2 altimetric heights

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

Mekong: Waveforms

Google Earth image of 19 Apr 2011 Mekong crossing. Satellite ground track N-S

Waveforms (blue curve) across the Mekong ($\mathrm{N}=110$) with empirical retracker (green curve) with retracked bin given by red line; cyan line shows OCOG/Threshold retracked bin
(Newcastle
University Civilil Engineering \&Geosciences

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy
6 June 2017

Mekong: Heights from Multi-look Waveforms

Conclusion: The SAMOSA2 retracking in G-POD is inappropriate for inland waters. Retracking G-POD waveforms using the empirical trackers developed in CRUCIAL or with the OCOG/Threshold retracker yields enhanced results.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy 6 June 2017

Mekong: Height Validation

Location of 5 gauges along Mekong, the Khone Phapheng Falls and the 0 km chainage point.

CryoSat-2 heights assigned to nearest gauge and corrected to gauge location using low water level slope. Correction less accurate at high water levels as range not consistent along the Mekong. DTU supplied retracked heights based on L1B waveforms. RMS between DTU and NCL heights is 9.1 cm including values that are clearly off the Mekong.
Conclusion: Heights from CRUCIAL and independent retracking of SAR L1B waveforms is 9 cm RMS for the Mekong.

SAR FBR heights ($N=40$). Gauges and range identified by lines/circles. Circles at gauge show low water level (Dec-Apr) and high water level (AugSep). Waterfall located at chainage 620 km . The 0 km chainage location corresponds to $\left(18.23536^{\circ} \mathrm{N}\right.$, $104.0412^{\circ} \mathrm{E}$).

Mekong: Height Validation near Kratie

Of 5 gauges only Kratie permitted detailed investigation

Google earth image overlaid by CryoSat-2 passes across the Mekong near the Kratie gauge (red circle) and the two ENVISAT/Altika crossing points. The river width is about 1900 m . DAHITI (Schwatke et al., 2015a) altimetric heights from the near identical ground tracks of ERS-2, Envisat and Alitka are available for two crossings 7 km and 43 km downstream from Kratie.

Differences between gauge heights at Kratie and the CryoSat-2 heights modified for river slope (courtesy of Mekong River Commission).

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy
6 June 2017

Mekong: Height Validation near Kratie

Data Provider	Satellite	Period	RMS (cm)
CRUCIAL	Cryosat-2	Jan 2011 - Mar 2015	54.0
DAHITI	Envisat	Jul 2002 - Nov 2010	62.0
DAHITI	Altika	Jun 2013 - Nov 2014	47.2
River\&Lakes	ERS-2	Apr 1995 - Jun 2003	70
River\&Lakes	Envisat	Jul 2002 - Mar 2006	65

Mekong near Kratie: Comparisons of altimetric and gauge data. Cryosat-2 data corrected for quadratic slope

FBR SAR heights ($\mathrm{N}=40$, empirical retrackers) near Kratie (RMS 59.9 cm). CryoSat-2 data taken within range 5 km upstream to 80 km downstream of gauge.
Conclusion: Comparison against gauge date is dependent on distance from gauge for a non-repeating orbit even if correction is made for river slope.

Conclusion: Given the conclusion about distance from gauge the CryoSat-2 comparisons are comparable to ENVISAT at Kratie on the Mekong but less accurate than SARAL/Altika.

Ka band altimeter (35.75 GHz) of SARAL/AltiKa insensitive to ionosphere. The high frequency has advantages over Ku band altimeters: (1) reduced antenna beam width; (2) reduced radar footprint; (3) increased Pulse Repetition Frequency; (4) better range resolution (0.47 m Envisat/CryoSat-2 etc, 0.3 m SARAL/AltiKa). The disadvantage is its sensitivity to rain and clouds reducing the operational window

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

SAR FBR Analysis: Amazon Gauge Comparison near Obidos

Gauge at Obidos $\left(1.9225^{\circ} \mathrm{S}, 55.6753^{\circ} \mathrm{W}\right)$.

- mean height over 11 points centred on mid crossing point; heights in excess of 1 m from from median rejected (sd 5-20 cm).
- data over long stretch approximately $\pm 45 \mathrm{~km}$ from gauge

Source	Satellite	Crossing	Date	Sigma (cm)	$\#$
DAHITI	ENV+AltiKa	ENV1	May 2002 - Jun2016	37.4	$92(2)$
	ENV		May 2002 - Oct 2010	40.2	$77(0)$
	AltiKa		May 2013 - Jun 2016	17.4	$15(2)$
	ENV+AltiKa	ENV2	May 2002 - Jun 2016	56.4	$103(2)$
	ENV		May 2002 - Oct 2010	57.7	$78(0)$
	AltiKa		May 2013 - Jun 2016	26.3	$25(2)$
CRUCIAL	CryoSat-2	Various	Oct 2012 - Apr 2015	36.1	$34(0)$
	CryoSat-2		Oct 2012 - Apr 2015	34.9	$34(0) \quad$ slope adj
	CryoSat-2		Oct 2012 - Apr 2015	27.3	$32(2) \quad$ slope adj + 2.50

Google earth image overlaid by CryoSat-2 passes across the Amazon near the Obidos gauge (red circle) and the two ENVISAT/AltiKa crossing points.

Comparison of altimetry against the Obidos gauge on the Amazon. Final column gives number of accepted measurements with rejected points in parenthesis.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy
6 June 2017

SAR FBR Analysis: Amazon Gauge Comparison near Manacapuru

Gauge at Manacapuru (3.3122 $\left.{ }^{\circ} \mathrm{S}, 60.6303^{\circ} \mathrm{W}\right) 650 \mathrm{~km}$ upstream of Obidos

- mean height over 11 points centred on mid crossing point; heights in excess of 1 m from from median rejected (sd 5-20 cm).
- data over long stretch approximately $\pm 45 \mathrm{~km}$ from gauge

FBR SAR heights ($\mathrm{N}=40$, empirical retrackers) near Manacapuru (RMS 53.6 cm)

Google earth image overlaid by CryoSat-2 passes across the Amazon near the Manacapuru gauge (red circle).

Newcastle
University
Civilil Engineeing Civil Enginecering
CGCeosciences

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy 6 June 2017

SARin FBR Analysis: Amazon Gauge Comparison near Tabatinga

Google earth image of Amazon near Tabatinga; gauge marked as red circle with Jason-2/OSTM crossing denoted by red diamond.

Tabatinga gauge heights and CryoSat-2 SARin ($\mathrm{N}=60$, OCOG/Threshold) heights corrected for river slope. With some SARin mode passes ≈ 2 days apart, but differ in longitude by 1.2° the difference between heights gave slope of the river. RMS difference 29.9 cm .
Conclusion: Despite utilizing crossings over a 150 km stretch the CryoSat-2 agreement with the Tabatinga gauge data is comparable to the Jason-2/OSTM DAHITI gauge data for a crossing just 8 km from the gauge.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy
6 June 2017

The CryoSat-2 value is comparable to the RMS of 29.1 cm from 445 points of a Jason-2/OSTM crossing about 8 km from the gauge.

SARin FBR Analysis. Amazon near Tabatinga (5 May 2012).

OCOG/Threshold based difference between heights from the two SARin antennae.

Conclusion: The two antennae provide height measurements to within 1 cm (standard deviation) over flat areas.

Mathematical expressions for cross angle in D4100 and D4200

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

SARin FBR Analysis. Amazon near Tabatinga (5 May 2012).

SARin waveforms (upper), coherence between phases (middle) and cross angle in degrees (lower). In the upper plot the right antennae is coloured blue and the left antennae is green. X axis is bin number; Y axis is power (upper), coherence (middle) and degree (lower). Left hand column location \#274 (3.930 ${ }^{\circ} \mathrm{S} 70.207^{\circ} \mathrm{W}$); right hand column location \#275 (3.927 ${ }^{\circ} \mathrm{S} 70.207^{\circ} \mathrm{W}$).

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

SARin FBR Analysis. Amazon near Tabatinga.

Google earth plot of descending pass on 8 September 2012 across Amazon near Tabatinga (upper).

Cross angles from SARin mode (lower). The blue arrow points along direction of flight.

Conclusion: In general the cross track angle is relatively noisy due to the complex nature of saturated ground and inland water. However, the plots generally show the expected behaviour of the cross angle particularly for large excursions of the river to left or right of the flight path.

CRUCIAL Dataset (WP4000)

Online key data sets:

- CryoSat-2 SAR FBR L1A data
- CryoSat-2 SARin FBR L1A data
- Geophysical correction data
- ACE2 and other GDEM data
- Jason-2 validation data
- Envisat validation data
- SARAL/Altika validation data
- River mask data
- In-situ river (gauge) data
- Data Assimilation for hydrology

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

COFFEE

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy
6 June 2017

CRUCIAL Summary (WP4000/5000) and Scientific Roadmap (WP6000) I

- Landsat produces most reliable river masks. SAR delineation of water is more fuzzy although allweather/time system. Dynamic river masks may be needed for changing river morphology.
- Speckle in burst echoes affects the 80 Hz SAR data and multi-looks essential for precise heights.
- The number of stacked waveforms used in the multi-look waveform is important for SAR altimetry. A reduction from the maximum possible number $\approx 240(\mathrm{~N}=120)$ to say $81(\mathrm{~N}=40)$ waveforms centred on beam closest to nadir has been seen to reduce the variability in derived heights across Tonlé Sap.
- The G-POD SARvatore and SARinvatore waveforms are almost identical to those derived within CRUCIAL on using $\mathrm{N}=120$ or $\mathrm{N}=123$.
- The use of a Hamming window (cosine weighting) is recommended.
- Validation of CryoSat-2 along the Mekong severely affected by non-repeating orbit. Correction based on low flow river slope is not exact as the gauges show a difference in range and hence a change in slope at high flow.
- Difference between empirical and OCOG/Threshold retrackers not significant. A comparison of the OCOG/Threshold (RMS 66.9 cm) and empirical retrackers (67.8 cm) for $\mathrm{N}=40$ shows a slight preference for the OCOG/Threshold retracker.
- More advanced retrackers or the use of auto-correlation between consecutive waveforms across large lakes might change this conclusion. Variability in height recovery has been shown to be 5 cm across Tonlé Sap for multi-look SAR data at about 20 Hz . This is equivalent to a precision of 1-2 cm in 1 Hz data.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy 6 June 2017

CRUCIAL Summary (WP4000/5000) and Scientific Roadmap (WP6000) II

- Validation across Tonlé Sap affected by distance from gauge. For OSTM a 12 day lag inferred to Prek Kdam gauge. Lag increases with distance of pass from Prek Kdam. Agreement between Prek Kdam and OSTM of 42.6 cm is slightly reduced to 42.1 cm between Prek Kdam and CryoSat-2 assuming 12 dy time lag for CryoSat-2. Since this is incorrect there is evidence that CryoSat-2 is performing better than OSTM across Tonlé Sap.
- FBR SAR data close to Obidos gauge on the Amazon allowed the river slope to be computed from the gauge/altimetery residuals and chainage. On correcting for the slope gave RMS 27.3 cm applying a 2.5 σ rejection criterion.
- At Manacapuru, 650 km upstream from Obidos, the RMS, was 53.6 cm . These RMS values can be compared against Birkett et al. (2002), where best results from Topex/Poseidon for 1992-1999 were in the range $0.4-0.6 \mathrm{~m}$ RMS. Thus, the Manacapuru RMS falls within the Birkett et al. (2002) best results while the CryoSat-2 result at Obidos is superior by a factor of two.
- CryoSat-2 is comparable or slightly more accurate than ENVISAT and Jason-2/OSTM but less accurate than SARAL/Altika.
- Altimetric heights for Cryosat-2 can be obtained from ESA's Ground-Processing on demand (G-POD) services SARvatore (SAR Versatile Altimetric Toolkit for Ocean Research \& Exploitation) and SARinvatore (SARin Versatile Altimetric Toolkit for Ocean Research \& Exploitation). The SAMOSA2 retracker is inappropriate for inland waters. Retracking the G-POD waveforms yields enhanced results. Since CRUCIAL analyses the SAMOSA+ retracker has become available on SARvatore. SAMOSA+ is the SAMOSA2 model tailored for inland water, sea ice and coastal zone domain.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy 6 June 2017

CRUCIAL Summary (WP4000/5000) and Scientific Roadmap (WP6000) III

- Heights from SARin FBR data near gauge at Tabatinga yielded an RMS of 29.9 cm . Again this is an improvement on the best results of Birkett et al. (2002) for the Amazon.
- The SARin cross angle is dominated by the location of the dominant water surface reflectors in the cross-track footprint slice.
- In general the SARin cross track angle is relatively noisy due to the complex nature of saturated ground and inland water. However, the results generally show the expected behaviour of the cross angle particularly for large excursions of the river to left or right of the flight path.
- Heights for the Lower Brahmaputra derived by DTU from SARin L1B waveforms retracked using a primary peak threshold retracker were consistent with results obtained within CRUCIAL from L1A data. (standard deviation 16 cm).
- Satellite altimetry can provide near real time water heights. There is scope for additional online near real time product for rivers as epitomized by R\&L but with assured reliability, sustainability and user friendliness.
- Progressing from water levels to lake volumes and discharge is a major advance. Discharge either requires extensive modelling or can be based on statistical methods using water height, width and slope. All are available from remote sensing although altimetry gives the height above a datum and not true depth. There are methods to derive depth at minimum flow or a rating curves can be used.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy 6 June 2017

CRUCIAL Summary (WP4000/5000) and Scientific Roadmap (WP6000) IV

- CryoSat data in an inverse river modeling framework can constrain river geometry (datum, cross-section shape) and/or river hydraulic parameters (Manning numbers). This is not possible with classical short-repeat data. CryoSat data has a role to play even for rivers with comprehensive in-situ monitoring systems.
- Dynamic water masks could increase CryoSat data availability over rivers, especially for highly seasonal rivers with low bank slopes. SAR imagery has a key role to play here as an all-weather water masking tool.
- In an updating/data assimilation framework, CryoSat2 data can be used to increase predictive performance of models.
- Synthetic data assimilation experiments provide an opportunity to systematically assess data value for different missions / orbit configurations and combinations of missions.
- Comparisons between CryoSat-2 water heights and in-situ data for the Po and several Chinese rivers generally indicated a standard error of 0.5 m or better. In synthetic DA experiments, a standard error of 0.4 m resulted in a 27% improvement of CRPS while a standard error of 0.2 m resulted in a 32% improvement of CRPS. Higher accuracy of the data increases data value, but not proportionally.
- The best way of disseminating satellite radar altimetry to hydrologists is as spatio-temporal height point clouds, not as time series. The ideal inland water altimetry toolbox would integrate the height database with water masking tools (multispectral data, SAR) and allow the user to flexibly extract data points falling on water.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

CRUCIAL Outreach: Posters/Oral Presentations (WP7000)

- Benveniste, J., Moore, P., Berry, P.A.M., Balmbra, R., Birkinshaw, S., Bauer-Gottwein, P., Dinardo, S. and Lucas, B., (2014), CRUCIAL: CryoSat2 Success over Inland Water and Land: Preliminary Inland Water Heights and Validation, AGU Fall Meeting Abstracts, http://adsabs.harvard.edu/abs/2014AGUFM.H33P..04B\}
- Moore, P., Birkinshaw, S., Restano, M., Ambrozio, A. and Benveniste, J., (2016), Methodology and Validation of SAR and SARin Full Bit Rate Altimetric Waveforms and Heights from the CRUCIAL Project, 2016 SAR altimetry Workshop, La Rochelle, France, http://www.ostst-altimetry-2016.com/wp-content/uploads/abstracts_books_SAR_161017. pdf
- Moore, P., Birkinshaw, S., Restano, M., Ambrozio, A. and Benveniste, J., (2016), Methodology and Validation of SAR and SARin Full Bit Rate Altimetric Waveforms and Heights from the CRUCIAL Project, AGU Fall Meeting
- Moore, P., Birkinshaw, S., Restano, M., Ambrozio, A. and Benveniste, J., (2016), CRUCIAL: CryoSat-2 Success over Inland Water and Land: SAR and SARin Full Bit Rate Altimetric Heights and Validation, EGU General Assembly Conference Abstracts, 18, 6200, http://adsabs.harvard.edu/abs/2016EGUGA..18.6200M
- Moore, P., Berry, P.A.M., Birkinshaw, S., Balmbra, R., Dinardo, S., Lucas, B. and Benveniste, J., (2015), CRUCIAL: CryoSat-2 Success over Inland Water and Land: Full Bit Rate Altimetric Heights and Validation, Geophysical Research Abstracts. Vol. 17, EGU2015-4687-1.
- Moore, P. , Balmbra, r., Birkinshaw' S., Dinardo. S, Benveniste, J., (2015), CRUCIAL: CryoSat-2 Success over Inland Water and Land: Full Bit Rate Altimetric Heights and Validation, IUGG, $26^{\text {th }}$ IUGG General Assembly, Prague
- Moore P, Berry P.A.M, Birkinshaw S, Balmbra R, Bauer-Gottwein P, Benveniste J, Dinardo S and Lucas B. (2014) CRUCIAL: CryoSat-2 Success over Inland Water and Land. $40^{\text {th }}$ COSPAR Scientific Assembly, Moscow.
- Moore, P, Berry, P, Balmbra, R, Birkinshaw, S, Kilsby, C, Bauer-Gottwein, P, Benveniste, J, Dinardo, S \& Lucas, B (2014), CRUCIAL: CryoSat-2 Success over Inland Water and Land, Geophys. Res. Abstr., 16, EGU2014-7390-1.
- Moore P, Berry P.A.M, Birkinshaw S, Balmbra R, Kilsby C, O'Donnell G.M, Bauer-Gottwein P, Benveniste J, Dinardo S and Lucas B., (2013), CRUCIAL: CryoSat-2 Success over Inland Water and Land, AGU Fall Meeting Abs, http://adsabs.harvard.edu/abs/2013AGUFM .H51E1234M
- Schneider, R., P. N. Godiksen, H. Villadsen, H. Madsen, and P. Bauer-Gottwein (2015), Combining Envisat type and CryoSat-2 altimetry to inform hydrodynamic models, Geophys. Res. Abstr., 17, 9372.
- Schneider, R., P. N. Godiksen, M.-E. Ridler, H. Madsen, and P. Bauer-Gottwein (2016), Assimilation of CryoSat-2 altimetry to a hydrodynamic model of the Brahmaputra river, Geophys. Res. Abstr., 18, 12534.
- Schneider, R., P. N. Godiksen, M.-E. Ridler, H. Villadsen, H. Madsen, and P. Bauer-Gottwein (2016), Combining Envisat type and CryoSat-2 altimetry to inform hydrodynamic models, in Proceedings Living Planet Symposium 2016, vol. SP-740, edited by L. Ouwehand, ESA.

CRUCIAL Outreach: Journal Publications (WP7000)

- Moore, P., Birkinshaw, S.B., Benveniste, J., Ambrozio, A., Restano, M., (2017) Cryosat-2 Full Bit Rate Level 1A Processing and Validation for inland Water Applications, Adv. Space Res. Cryosat-2 Special Issue, submitted manuscript.
- Schneider, R., P. Nygaard Godiksen, H. Villadsen, H. Madsen, and P. Bauer-Gottwein (2017), Application of CryoSat-2 altimetry data for river analysis and modelling, Hydrol. Earth Syst. Sci., 21, 751-764, 2017
- Schneider, R., M.-E. Ridler, P. N. Godiksen, H. Madsen, and P. Bauer-Gottwein (2017), A data assimilation system combining CryoSat-2 data and hydrodynamic river models, Journal of Hydrology, submitted manuscript.
- Schneider, R., Tarpanelli, A., Nielsen, K., Madsen, H., and P. Bauer-Gottwein (2017), Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model, Manuscript in preparation

CRUCIAL Outreach: Website (WP7000)

http://research.ncl.ac.uk/crucial/ \&Geosciences

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy

Thankyou for listening

(3newne Newtle
4. University Civill Engineering \&Geosciences

DTU

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy 6 June 2017

CRUCIAL was funded by ESALs Support To Setence Element (STSE), a programmatic component of the Earth Observation Envebpe Progamme, to the Earth Otservation Envelope Progyamit, to
investigate the application of Crossat-2 data ovet invesigate the application of Cryosal-C centa ore:
inland water wihh a forwardlook to Sentinel-3.

Cprosat-2's primary instrument is STRAL [SAR Interterometric Radar Altimete) SIRAL operates In ane of thee modes: Low Resolition Mode (LRM), Synthetic Apeture Radar [SAR] and Intelerometric Symthetic Aperture Radar [SARin] as illustrated in Fig. 1 for the Amason Basin

TryoSat-2 FBR Level 1A complex valued quadrature data lor the burst echoes hive been protessed over inland waters to detive altimetic virtual stage inland water heights. The processing thain uses an azimuth Fast founte Translorm for beam lormation and sterage towards a see of spatisly equiangdar and sceerage towarus a set of spatasty equianguar ground track poants every soum solong the ground
track By censideration of all burst echoes a stadk of wyelorms at each ground point [Fn 2] was of wovelorms at each ground point (Fy. 2) was derived. High resolution fiver masks identilied the inland water targets.

Utilising slant range mulitbok weveloms were retaded using empiried wavelorms designed for inland waters and the ocoorthreshold retradke [fig 3].
Methodelogy validated agairst in situ data tor the Meksong induting Tanle Sap, the Amasen [fig. 4] and the Brahmuptra.

SAR virtual inland water heghts near dbeos show excellent agreement to gauge data (fig 5) weh RMS 27.3 cm . Ths cempares to $40.2[57.7) \mathrm{cm}$ lor ENVISAT, for May 2002 - 0at 2010, and 17.4 (26.3]) emfor AliXa, May 2013 - Jin 2016, at ENV1 (ENV2).

misphets.

Amazon and Mekong comparisens show that tive: heights from CryoSat-2 are more acturate than TOPEX/Poseidon and Envisat Meights but less TOPEXPOSeidon and Envisat Neghts but less
accurate than $5 A R A L A M E S$. The CryoSat- 5 SAR alameter peforms better than conventional X band altimeters, due to the dassically increase: resolution of the lootprint in the alongtrack direttion. The Ka band SARAL altimeter onboary Alexa is the most accurate sate ite data, toue to the reduced lootprint sike, although a number of heghts are ouniers which probaciy relects the susceptititiy of the Ka altmetes to ran and clouds.
crucial has assessed the walue of Cryosat:2 radar atametiy data for river ansysis and modeling a with application to the Brahmaputa Rivet. With a sliding ground-track in the 12 manthly sub-eyctes, processing. outlier remord and quallity control of twet levels are more complicated than for dassics short repeateotht missions (10 or 35 dys) Ingestion of Crossal-2 data into hydrodinam models required a nowel spereach [Pucta developed metheds for piterion. cives developed metiofs for hieng, proctss, and aggecgaing tryosat- 2 data cver rivers and
 consoling of a ane te tastorn khean mant
 is improved by approximately 15% in the DA rut
 What eperisup han fig. or. The uala asenisian Syatem developed in chacral is generic and can be applied to awy nver system using data from any missicn or combination of messions. It s: ustal toel to compare data value arross missions and fivet srotems and a signetikant step towards: global realtime inimd water fortecasting system.

Final Presentation Meeting, ESRIN-ESA, Frascati, Italy 6 June 2017

